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Abstract

A model of heat transfer in an infiltrated granular bed, which allows for most important special features of the process, viz., aniso-
tropy of thermal properties and nonuniform distribution of the porosity and gas (liquid) velocity over the cross section, has been for-
mulated. The concepts of the filtration boundary layer and viscous sublayer have been introduced and identified. Temperature fields
and values of the coefficient of heat exchange between the bed and the wall of the tube bounding it have been calculated. The latter
are generalized in the form of the dimensionless correlation which is compared with the available experimental data. It is shown that
at Re1 6 2000 the developed model describes the process of heat transfer in the granular bed well.
� 2006 Published by Elsevier Ltd.
1. Introduction

As is known heat transfer in the infiltrated granular bed
has a number of special features compared to the one-
phase medium. The main of them are the anisotropy of
the heat conduction coefficient, its dependence on the par-
ticle diameter and the rate of filtration, substantial differ-
ence between the structural and transport characteristics
in the bed core and the region adjacent to the macrosurface
bounding the bed. The joint effect of these factors imparts a
specific character to the processes of heat and mass trans-
fer, which is inherent only in a motionless granular bed.
Vast literature is devoted to investigation of different
aspects of this process, see, e.g., the well-known mono-
graphs [1,2]. The effect of the anisotropy of thermal prop-
erties was considered in [1,3,4]. Special features of heat
transfer in the wall region, which greatly affect heat trans-
fer, were accounted for in three different ways:

(a) By introducing near the wall an effective gas inter-
layer with thickness l0 and thermal conductivity keff depen-
dent on the rate of filtration [5,6]. An analysis of
experimental data on heat exchange of the bed with the
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surface within the framework of this two-layer model
allowed one to obtain the following expressions for the
interlayer parameters [6]:

l0 ¼ 0:1d; ð1Þ

keff ¼ Akf þ 0:0061cfqf u1d; ð2Þ

where A = 1.6 (heat-conducting particles) and A = 1 (non-
heat-conducting particles). The near-wall coefficient of heat
transfer follows from (1) and (2) as

aw ¼
keff

l0

¼ 10ðAkf þ 0:0061cfqfu1dÞ
d

; ð3Þ

(b) By using a two-layer model in which the near-wall
zone was presented in the form of an infinitely thin layer
with a finite thermal resistance [1,7,8]. With such an
approach, the heat conduction equation was solved at the
boundary condition of the III kind

�kr

oT
or

����
r¼R

¼ awðT s � T wÞ: ð4Þ

The value of the near-wall coefficient of heat transfer aw

was found from the comparison of model and experimental
values of the heat-transfer coefficient a. It should be noted



Nomenclature

A coefficient in (2)
Bi = KtR/kf Biot number
cf heat capacity of gas (liquid), J/(kg K)
d particle diameter, m
K heat-transfer coefficient, W/(m2 K)
~K ¼ 1

.
d

10ðkfþ0:0061cf qf u1dÞ þ D
5:78ðkrÞ1

þ dt

kt

� �
heat-transfer

coefficient in [6], W/(m2 K)

Kt = kt/dt W/(m2 K)
K0 permeability, m2

k, k* thickness of the filtration thermal boundary
layer and thermal sublayer, m

L tube length, m
l0 thickness of the gas film near the heat-transfer

surface, m
Nu = ad/kf, Nuw = awd/kf Nusselt number
P pressure, kg/(m s2)
Pr = cfqfmf/kf Prandtl number
Pe = cfqfu1L//kf Peclet number
r, r0 = r/R radial coordinate, m
R heat-exchanger radius, m
Re1 = u1d/mf Reynolds number
Recr = ucrd/mf critical Reynolds number
T temperature, K
T0 temperature of the tube outer surface, K
Tw temperature of the tube inner surface, K
Tin gas (liquid) temperature at the inlet to the bed,

K
Ts temperature at the outer surface of the near-wall

zone, K
hTi cross section-mean temperature, x = const., K
u rate of gas (liquid) filtration, m/s

ucr critical velocity, m/s
u1, u0 = u/u1 rate of filtration in the bed core, m/s
x, x0 = x/L longitudinal (axial) coordinate, m

Greek symbols

a ¼ 1= 1
K � 1

K t

� �
heat-transfer coefficient, W/(m2 K)

aw near-wall coefficient of heat transfer, W/(m2 K)
a1, a2 coefficients in (11), 1/s and 1/m, respectively,

thickness of the filtration boundary layer, m
d* thickness of the filtration viscous sublayer, m
dt tube wall thickness, m
e porosity
e1 porosity in the bed core
h = (T � T0)/(Tin� T0) k thermal conductivity, W/(m K)
lf dynamic viscosity of gas (liquid), kg/(m s)
mf kinematic viscosity of gas (liquid), m2/s
qf gas (liquid) density, kg/m3

Subscripts

a axial
cr critical
eff effective
f gas (liquid)
r radial
s particles
st stabilized
t tube wall
w near-wall
1 bed core
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that the structure of (4) logically disagrees with an assump-
tion on an infinitely thin near-wall layer where two different
temperatures Ts and Tw are possible;

(c) In the Mukhin–Smirnova model [9] it was assumed
that considerable thermal resistance is concentrated near
the wall in the region of a sharp temperature gradient
where molecular heat transfer is realized. Assuming the
thicknesses of the hydrodynamic and thermal boundary
layers being equal, to calculate them we used the expression

d ¼ k ¼ ðRecrmf

ffiffiffiffiffiffi
K0

p
Þ=u1d; ð5Þ

where Recr played the role of an adjusting empirical
parameter.

As is seen from the above analysis, the main feature of
the mentioned models of heat transfer is their empirical
character that is expressed by use of the effective parame-
ters l0, aw, and Recr which are introduced a priori and are
determined by the experimental data on the values of the
heat-transfer coefficient. This indicates that being obtained
in such a way they have a limited application region and
cannot be justifiably used in calculations of heat transfer
under new conditions.

2. Problem formulation

The paper is aimed at development of a universal model
of heat transfer which adequately, from the physical point
of view, describes the mechanism of the phenomenon and
does not use, for this purpose, the effective quantities such
as l0, aw, and Recr. Formulation of a model of this level
presupposes:

(a) Analysis of and account for the distribution of poros-
ity over the space of the bed;

(b) Modeling of the porosity-related distribution of gas
(liquid) velocity over the bed cross section;

(c) Determination of and account for the dependences of
local thermal conductivities of the granular bed on
porosity, rate of filtration, thermophysical character-
istics of gas (liquid) and particles;
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(d) Analysis of the values of thermal conductivities in the
near-wall region.
3. Heat transfer model

For definiteness, we consider heat transfer in a tube with
a granular bed of the boundary condition of the first kind
on the outer surface of the tube. In one-temperature
approximation and with account of thermal anisotropy
of the bed the heat conduction equation has the form of
the equation of the 2nd order of the elliptic type

cfqf uðrÞ
oT
ox
¼ 1

r
o

or
rkrðrÞ

oT
or

� �
þ kaðrÞ

o2T
ox2

; ð6Þ

the boundary conditions are

x ¼ 0; cfqf u1T in ¼ cfqfuðrÞT � kaðrÞ
oT
ox
; ð7Þ

x ¼ L;
oT
ox
¼ 0; ð8Þ

r ¼ 0;
oT
or
¼ 0; ð9Þ

r ¼ R; �krðrÞ
oT
or
¼ kt

dt

ðT � T 0Þ: ð10Þ

We note that the necessity to apply the Dankwerst condi-
tions to Eq. (6) is shown in [10]. Eq. (6) and condition
(7) are written without regard for the zone of hydrody-
namic stabilization of gas (liquid) flow, which, as is known,
amounts to several particle diameters [11]. This allows one
to consider the quantities u(r), kr(r), and ka(r) as functions
only of radius r.

Despite a rather standard form of Eq. (6) with condi-
tions (7)–(10), calculation of temperature fields with the
help of them is rather difficult due to the existing problem
of correct determination of the functions u(r), kr(r), and
ka(r). The solution of it is the main task of the present
study.

3.1. Distribution of gas (liquid) velocity across the tube

To calculate this distribution we used the filtration equa-
tion in the form [12]

� oP
ox
¼ ða1 þ a2uÞqfu� lf

1

r
o

or
r
ou
or

� �
: ð11Þ

The coefficients a1 and a2 were calculated by the formulas

a1 ¼ 150
ð1� eÞ2

e3

mf

d2
; a2 ¼ 1:75

1� e
e3

1

d
; ð12Þ

which agree with the known Ergun formula [1]

� oP
ox
¼ 150

ð1� eÞ2

e3

lfu

d2
þ 1:75

ð1� eÞ
e3

lf u
2

d
: ð13Þ

The value of the pressure gradient in Eq. (1), which can be
called the generalized Brinkman equation, was calculated
by (13) under the condition of the bed core
� oP
ox
¼ 150

ð1� e1Þ2

e3
1

lfu1
d2
þ 1:75

1� e1
e3
1

lfu
2
1

d
: ð14Þ

With this in mind, the distribution of gas (liquid) velocity
in the bed cross section, determined by (11), was found
numerically from the solution of the boundary-value
problem

150
ð1� e1Þ2

e3
1

þ 1:75
ð1� e1Þ

e3
1

Re1 � 150
ð1� eÞ2

e3

u
u1

� �

� 1:75
1� e

e3
Re1

u
u1

� �
þ d

R

� �2
1

r0
o

or0
r0

o

or0
u

u1

� �� �
¼ 0;

ð15Þ
u

u1

����
r0¼1

¼ 0;
ou
or0

����
r0¼0

¼ 0: ð16Þ

Moreover, the velocity profile based on the Ergun equation
(13) was found by the formula following from (13) and (14)

u
u1
¼ 150

150ð1� eÞ
3:5Re1

�
 
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7e3

1502ð1� eÞ3
150
ð1� e1Þ2

e3
1

Re1þ1:75
1� e1

e3
1

Re2
1

 !vuut !
:

ð17Þ

In calculations of the distributions u(r) we used the depen-
dence e(r) in the form

eðrÞ ¼ e1 þ ð1� e1Þ cos 2p
R� r

d

� �
exp �1:5

R� r
d

� �
;

ð18Þ

obtained as a result of generalization of experimental data
of [13] by the measurements of e(r).

The results of calculation of the functions u(r) by (15)–
(17) are shown in Fig. 1. As is seen, the functions deter-
mined by the generalized Brinkman equation (15) fairly
well agree with the functions, calculated by (17), every-
where except a narrow near-wall zone with a thickness of
about 0.1d, where the effect of gas (liquid) viscosity mani-
fests itself. This allows one to introduce and identify, as
shown in Fig. 1, the concepts of a filtration hydrodynamic
boundary layer and a viscous sublayer. As is seen, a special
character of the function u(r) inherent only in the granular
bed is realized in the filtration boundary layer. The quanti-
ties d and d* calculated by the technique shown in Fig. 1,
are presented in Fig. 2. According to classification of
[14], three flow models were considered: laminar 5 <
Re1 < 80, transient 80 < Re1 < 120, and turbulent
Re1 > 120. The following approximation relation for d*

is obtained for a laminar region:

d�
d
¼ 0:12Re�0:08

1 : ð19Þ

We have for the transient region

d�
d
¼ 0:34Re�0:32

1 : ð20Þ
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Fig. 1. Distribution of local gas (liquid) velocity in the near-wall region of the granular bed: (a) Re1 = 1, (b) 100. (1) calculation by (15) and (16); (2)
calculation by (17).
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and for the turbulent region

d�
d
¼ 0:33Re�0:31

1 : ð21Þ

The relation

d
d�
ffi 1:78; ð22Þ

which holds for the three regions, was obtained for calcu-
lation of d.

3.2. Calculation of thicknesses of the filtration thermal

boundary layer and thermal sublayer

We use the known relation between d* and k* [15]
k�
d�
¼ 1

Pr1=3
: ð23Þ
With account for (23) from (19)–(21) we obtain

a laminar region
k�
d�
¼ 0:12Re�0:08Pr�0:33; ð24Þ
a transient region

k�
d�
¼ 0:34Re�0:32Pr�0:33; ð25Þ
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a turbulent region

k�
d�
¼ 0:33Re�0:31Pr�0:33; ð26Þ

The values of the thermal filtration layer were calculated by
the relation k/k* = 1.78 which is similar to that found ear-
lier for d/d* [formula (22)].

3.3. Determination of efficient thermal conductivities

At a distance from the heat transfer surface (in the bed
core) these quantities are calculated by the formulas [1,11]

ðkrÞ1 ¼ k0
s þ 0:1cfqf u1d; ð27Þ

where

k0
s

kf

¼ 1þ ð1� eÞð1� kf=ksÞ
kf=ks þ 0:028e0:63ðks=kfÞ0:18

; ð28Þ

ðkaÞ1
ðkrÞ1

¼
1; Re1 6 10;

0:66Re0:32
1 ; Re1 > 10:

�
ð29Þ

We note that relation (29) was obtained as a result of
processing of experimental data by (ka)1/(kr)1 given
in [1].

Adaptation of relations (27)–(29) for calculation of ther-
mal conductivities near the wall can be made with account
for the existence of the thermal boundary layer and thermal
sublayer. The expression for kr(r) was formulated in the
form

krðrÞ ¼
keff ; R� k� < r 6 R;

keff þ k�r�kf

k�k�
ðR� k� � rÞ; R� k < r < R� k�

k�r ¼ k0
s þ 0:1cfqf uðrÞd; 0 6 r < R� k:

8><
>:

ð30Þ
To calculate kr(r) we used the relation similar to (29)

kaðrÞ
krðrÞ

¼
1; Re1 6 10;

0:666Re0:32
1 ; Re > 10:

�
ð31Þ

The value of the effective thermal conductivity in the
thermal sublayer is given by relation (2) which is similar
to (27).
4. Analysis of the theoretical model

We write the system of Eqs. (6)–(10) in the dimension-
less form

Peu0ðr0Þ oh
ox0
¼ L

R

2� �
1

r0
o

or0
r0

krðr0Þ
kf

oh
or0

� �
þ kaðr0Þ

kf

o
2h

oðx0Þ2
:

ð32Þ

The boundary conditions are

x0 ¼ 0;
T in

T in � T 0

¼ u0ðr0Þ hþ T 0

T in � T 0

� �
� 1

Pe
oh
ox0

; ð33Þ

x0 ¼ 1;
oh
ox0
¼ 0; ð34Þ

r0 ¼ 0;
oh
or0
¼ 0; ð35Þ

r0 ¼ 1; � oh
or0
¼ Bih

1þ 0:0061Re1Pr
: ð36Þ

For comparison we considered the parabolic heat
conduction equation (without regard for longitudinal
thermal conductivity) with the corresponding boundary
conditions
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Peu0ðr0Þ oh
ox0
¼ L

R

� �2
1

r0
o

or0
r0

krðr0Þ
kf

oh
or0

� �
; ð37Þ

x0 ¼ 0; h ¼ 1; ð38Þ

r0 ¼ 0;
oh
or0
¼ 0; ð39Þ

r0 ¼ 1; � oh
or0
¼ Bih

1þ 0:0061Re1Pr
: ð40Þ

The heat-transfer coefficient was calculated by the formula

K ¼ �kr

oT
or

����
r¼R

1

hT i � T 0

: ð41Þ

Fig. 3 shows the temperature fields calculated by (32)–
(36) and (37)–(40) for the following parameters of the
granular bed: Tin = 373 K, T0 = 273 K, L = 0.025 m, R =
0.005 m, dt = 0.002 m, d = 0.001 m, k0

s ¼ 0:1 W/(m K),
cf = 1015 J/(kg K), A = 1, kt = 62 W/(m K), kf =
0.027 W/(m K), lf = 1.8 � 10�5 kg/(m s). As is seen, in all
cases, rather large temperature gradients due to the pres-
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Fig. 3. Temperature distribution in different cross sections of the tube with a gr
(4) 1. Solid lines – solution (32)–(36), dashed lines – (37)–(40).
ence of the thermal sublayer are observed in the near-wall
region. At small Re1, the difference between the solutions
of the elliptic and parabolic heat conduction equations are
rather appreciable (Fig. 3a and b) and decrease with an
increase of Re1 (Fig. 3c and d).

Fig. 4 shows the calculated variations of the heat-trans-
fer coefficient along the tube length. On generalization of
the obtained values of ast in the case of stabilized heat
transfer an important conclusion was drawn within the
context of the present paper: the calculated values of ast

are approximated by the formula

Nust ¼
1

0:1kr

keff
þ 0:345 kf

ðkrÞ1
R
d

; ð42Þ

with a rms error not exceeding 5% [keff and (kr)1 are given,
respectively, by (2), (27) and (28)]. This formula was ob-
tained in [6] as a result of analytical solution of the system
of Eqs. (37)–(40) at u(r) = u1= const. with the use of the
concepts on the existence of a gas (liquid) film with the
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parameters (1) and (2) near the wall. This fact can serve as a
basis for using a simple two-layer model (1)–(3) in
calculations.

In Fig. 5, the calculation by (42) is compared with the
experimental data available in the literature [8,16,
Fig. V.24]. As is seen, in all cases, the calculated data agree
well with those obtained experimentally. Due to a great
dependence of (kr)1on Re1, the contribution of the bed core
to the total resistance [the second term in the denominator of
(42)] to heat transfer decreases with an increase of velocity.

An important parameter which determined the intensity
of the heat transfer process is the value of the initial ther-
mal section xst. For calculation of it, a simple approxima-
tion relation

xst=L ¼ Re�0:3
1 ðR=dÞ0:4; 1 6 Re1 6 2000 ð43Þ

is obtained. This relation indicates a decrease of xst with an
increase of the rate of gas (liquid) filtration. This unusual
relation that qualitatively differs from those similar for
one-phase media [15] can be explained by a strong depen-
dence of keff, kr, and ka on the rate of filtration which leads
to enhancement of heat transfer and decrease of the inlet
section with an increase of the rate of filtration.

5. Conclusions

A model of heat transfer in a granular bed ((6), (15),
(16), (18), (27)–(31)) has been developed. The model allows
for main specific features of the process, i.e., anisotropy of
thermal properties of the bed, nonuniform distribution of
porosity and filtration rate across the bed. The concepts
of the filtration boundary layer and the viscous sublayer
have been introduced. Approximation relations have been
obtained for calculation of the thicknesses (19)–(20) and
thermal sublayer (24)–(26). It was shown that the calcu-
lated values of ast are in good agreement with relation
(42) obtained in [6] within the framework of the two-layer
model of heat transfer (1)–(3). An approximation relation
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was found for calculation of the inlet thermal section (43).
The results of the study can serve as a ground for applica-
tion of the model of near-wall heat transfer (1)–(3) in the
computational practice.
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